Publications    [Google Scholar]


2023

TOIS'23          

Robust Collaborative Filtering to Popularity Distribution Shift
An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang, Tat-Seng Chua

EMNLP'23          

ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction
Yaorui Shi, An Zhang*, Enzhi Zhang, Zhiyuan Liu, Xiang Wang

NeurIPS'23          

Empowering Collaborative Filtering with Principled Adversarial Contrastive Loss
An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua

NeurIPS'23          

Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis
Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He

NeurIPS'23          

Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, Tat-Seng Chua

ACM MM'23          

Online Distillation-enhanced Multi-modal Transformer for Sequential Recommendation
Wei Ji, Xiangyan Liu, An Zhang*, Yinwei Wei, Yongxin Ni, Xiang Wang

ACM MM'23          

Redundancy-aware Transformer for Video Question Answering
Yicong Li, Xun Yang, An Zhang, Chun Feng, Xiang Wang, Tat-Seng Chua

KDD'23          

Discovering Dynamic Causal Space for DAG Structure Learning
Fangfu Liu, Wenchang Ma, An Zhang*, Xiang Wang, Yueqi Duan, Tat-Seng Chua

WWW'23          

Invariant Collaborative Filtering to Popularity Distribution Shift
An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, Tat-Seng Chua

ICLR'23          

Boosting Causal Discovery via Adaptive Sample Reweighting
An Zhang, Fangfu Liu, Wenchang Ma, Zhibo Cai, Xiang Wang, Tat-Seng Chua

WSDM'23          

Cooperative Explanations of Graph Neural Networks
Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, Tat-Seng Chua


2022

NeurIPS'22          

Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering.
An Zhang, Wenchang Ma, Xiang Wang, Tat-Seng Chua

ICML'22          

Let Invariant Rationale Discovery inspire Graph Contrastive Learning.
Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, Tat-Seng Chua.

ICLR'22          

Discovering invariant rationales for graph neural networks.
YingXin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua.

TPAMI'22          

Reinforced Causal Explainer for Graph Neural Networks
Xiang Wang, Yingxin Wu, An Zhang*, Fuli Feng, Xiangnan He, Tat-Seng Chua

KDD'22          

CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation.
Yunshan Ma, Yingzhi He, An Zhang*, Xiang Wang, Tat-Seng Chua.


2021

NeurIPS'21          

Towards Multi-Grained Explainability for Graph Neural Networks
Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-Seng Chua


2020

SIGIR'20          

Disentangled Graph Collaborative Filtering
Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua.