Publications [Google Scholar]
2023
TOIS'23 |
Robust Collaborative Filtering to Popularity Distribution Shift An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang, Tat-Seng Chua |
EMNLP'23 |
ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction Yaorui Shi, An Zhang*, Enzhi Zhang, Zhiyuan Liu, Xiang Wang |
NeurIPS'23 |
Empowering Collaborative Filtering with Principled Adversarial Contrastive Loss An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua |
NeurIPS'23 |
Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He |
NeurIPS'23 |
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, Tat-Seng Chua |
ACM MM'23 |
Online Distillation-enhanced Multi-modal Transformer for Sequential Recommendation Wei Ji, Xiangyan Liu, An Zhang*, Yinwei Wei, Yongxin Ni, Xiang Wang |
ACM MM'23 |
Redundancy-aware Transformer for Video Question Answering Yicong Li, Xun Yang, An Zhang, Chun Feng, Xiang Wang, Tat-Seng Chua |
KDD'23 |
Discovering Dynamic Causal Space for DAG Structure Learning Fangfu Liu, Wenchang Ma, An Zhang*, Xiang Wang, Yueqi Duan, Tat-Seng Chua |
WWW'23 |
Invariant Collaborative Filtering to Popularity Distribution Shift An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, Tat-Seng Chua |
ICLR'23 |
Boosting Causal Discovery via Adaptive Sample Reweighting An Zhang, Fangfu Liu, Wenchang Ma, Zhibo Cai, Xiang Wang, Tat-Seng Chua |
WSDM'23 |
Cooperative Explanations of Graph Neural Networks Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, Tat-Seng Chua |
2022
NeurIPS'22 |
Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering. An Zhang, Wenchang Ma, Xiang Wang, Tat-Seng Chua |
ICML'22 |
Let Invariant Rationale Discovery inspire Graph Contrastive Learning. Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, Tat-Seng Chua. |
ICLR'22 |
Discovering invariant rationales for graph neural networks. YingXin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua. |
TPAMI'22 |
Reinforced Causal Explainer for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang*, Fuli Feng, Xiangnan He, Tat-Seng Chua |
KDD'22 |
CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation. Yunshan Ma, Yingzhi He, An Zhang*, Xiang Wang, Tat-Seng Chua. |
2021
NeurIPS'21 |
Towards Multi-Grained Explainability for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-Seng Chua |
2020
SIGIR'20 |
Disentangled Graph Collaborative Filtering Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua. |