Publications [Google Scholar]


2025

NeurIPS'25

The Emergence of Abstract Thought in Large Language Models Beyond Any Language
Yuxin Chen, Yiran Zhao, Yang Zhang, An Zhang*, Kenji Kawaguchi, Shafiq Joty, Junnan Li, Tat-Seng Chua, Michael Qizhe Shieh, Wenxuan Zhang

NeurIPS'25

Fading to Grow: Growing Preference Ratios via Preference Fading Discrete Diffusion for Recommendation
Guoqing Hu, An Zhang*, Shuchang Liu, Wenyu Mao, Jiancan Wu, Xun Yang, Xiang Li, Lantao Hu, Han Li, Kun Gai, Xiang Wang

NeurIPS'25

Safe + Safe = Unsafe? Exploring How Safe Images Can Be Exploited to Jailbreak Large Vision-Language Models
Chenhang Cui, Gelei Deng, An Zhang*, Jingnan Zheng, Yicong Li, Lianli Gao, Tianwei Zhang, Tat-Seng Chua

NeurIPS'25

On Reasoning Strength Planning in Large Reasoning Models
Leheng Sheng, An Zhang*, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, Tat-Seng Chua

NeurIPS'25

RSafe: Incentivizing Proactive Reasoning to Build Robust and Adaptive LLM Safeguards
Jingnan Zheng, Xiangtian Ji, Yijun Lu, Chenhang Cui, Weixiang Zhao, Gelei Deng, Zhenkai Liang, An Zhang*, Tat-Seng Chua

NeurIPS'25

Search and Refine During Think: Facilitating Knowledge Refinement for Improved Retrieval-Augmented Reasoning
Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, Xiang Wang

NeurIPS'25

AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems
Yu Shang, Peijie Liu, Yuwei Yan, Zijing Wu, Leheng Sheng, Yuanqing Yu, Chumeng Jiang, An Zhang, Fengli Xu, Yu Wang, Min Zhang, Yong Li

KDD'25

LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation
Yingzhi He, Xiaohao Liu, An Zhang*, Yunshan Ma, Tat-Seng Chua

SIGIR'25

AlphaFuse: Learn ID Embeddings for Sequential Recommendation in Null Space of Language Embeddings
Guoqing Hu, An Zhang*, Shuo Liu, Xiang Wang, Tat-Seng Chua

ICLR'25

Language Representations Can be What Recommenders Need: Findings and Potentials
Leheng Sheng, An Zhang*, Yi Zhang, Yuxin Chen, Xiang Wang, Tat-Seng Chua

ICLR'25

Preference Diffusion for Recommendation
Shuo Liu, An Zhang*, Guoqing Hu, Hong Qian, Tat-Seng Chua

ICLR'25

Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
Chenhang Cui, An Zhang*, Yiyang Zhou, Zhaorun Chen, Gelei Deng, Huaxiu Yao, Tat-Seng Chua


2024

NeurIPS'24

On Softmax Direct Preference Optimization for Recommendation
Yuxin Chen, Junfei Tan, An Zhang*, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, Tat-Seng Chua

NeurIPS'24

Customizing Language Models with Instance-wise LoRA for Sequential Recommendation
Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, Xiangnan He

NeurIPS'24

Towards Neuron Attributions in Multi-Modal Large Language Models
Junfeng Fang, Zac Bi, Ruipeng Wang, Houcheng Jiang, Yuan Gao, Kun Wang, An Zhang, Jie Shi, Xiang Wang, Tat-Seng Chua

NeurIPS'24

ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation
Jingnan Zheng, Han Wang, An Zhang*, Tai D. Nguyen, Jun Sun, Tat-Seng Chua

ACL'24

ProtT3: Protein-to-Text Generation for Text-based Protein Understanding
Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua

WWW'24

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout
An Zhang, Wenchang Ma, Pengbo Wei, Leheng Sheng, Xiang Wang

SIGIR'24

On Generative Agents in Recommendation
An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, Tat-Seng Chua

SIGIR'24

Large Language Model Powered Agents for Information Retrieval (Tutorial)
An Zhang, Yang Deng, Yankai Lin, Xu Chen, Ji-Rong Wen, Tat-Seng Chua

WWW'24

Large Language Model Powered Agents in the Web (Tutorial, Companion Volume)
Yang Deng, An Zhang, Yankai Lin, Xu Chen, Ji-Rong Wen, Tat-Seng Chua


2023

TOIS'23

Robust Collaborative Filtering to Popularity Distribution Shift
An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang, Tat-Seng Chua

EMNLP'23

ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction
Yaorui Shi, An Zhang*, Enzhi Zhang, Zhiyuan Liu, Xiang Wang

NeurIPS'23

Empowering Collaborative Filtering with Principled Adversarial Contrastive Loss
An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua

NeurIPS'23

Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis
Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He

NeurIPS'23

Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, Tat-Seng Chua

ACM MM'23

Online Distillation-enhanced Multi-modal Transformer for Sequential Recommendation
Wei Ji, Xiangyan Liu, An Zhang*, Yinwei Wei, Yongxin Ni, Xiang Wang

ACM MM'23

Redundancy-aware Transformer for Video Question Answering
Yicong Li, Xun Yang, An Zhang, Chun Feng, Xiang Wang, Tat-Seng Chua

KDD'23

Discovering Dynamic Causal Space for DAG Structure Learning
Fangfu Liu, Wenchang Ma, An Zhang*, Xiang Wang, Yueqi Duan, Tat-Seng Chua

WWW'23

Invariant Collaborative Filtering to Popularity Distribution Shift
An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, Tat-Seng Chua

ICLR'23

Boosting Causal Discovery via Adaptive Sample Reweighting
An Zhang, Fangfu Liu, Wenchang Ma, Zhibo Cai, Xiang Wang, Tat-Seng Chua

WSDM'23

Cooperative Explanations of Graph Neural Networks
Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, Tat-Seng Chua


2022

NeurIPS'22

Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering.
An Zhang, Wenchang Ma, Xiang Wang, Tat-Seng Chua

ICML'22

Let Invariant Rationale Discovery inspire Graph Contrastive Learning.
Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, Tat-Seng Chua.

ICLR'22

Discovering invariant rationales for graph neural networks.
YingXin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua.

TPAMI'22

Reinforced Causal Explainer for Graph Neural Networks
Xiang Wang, Yingxin Wu, An Zhang*, Fuli Feng, Xiangnan He, Tat-Seng Chua

KDD'22

CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation.
Yunshan Ma, Yingzhi He, An Zhang*, Xiang Wang, Tat-Seng Chua.


2021

NeurIPS'21

Towards Multi-Grained Explainability for Graph Neural Networks
Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-Seng Chua


2020

SIGIR'20

Disentangled Graph Collaborative Filtering
Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua.