Publications [Google Scholar]
2025
| NeurIPS'25 |
The Emergence of Abstract Thought in Large Language Models Beyond Any Language Yuxin Chen, Yiran Zhao, Yang Zhang, An Zhang*, Kenji Kawaguchi, Shafiq Joty, Junnan Li, Tat-Seng Chua, Michael Qizhe Shieh, Wenxuan Zhang |
| NeurIPS'25 |
Fading to Grow: Growing Preference Ratios via Preference Fading Discrete Diffusion for Recommendation Guoqing Hu, An Zhang*, Shuchang Liu, Wenyu Mao, Jiancan Wu, Xun Yang, Xiang Li, Lantao Hu, Han Li, Kun Gai, Xiang Wang |
| NeurIPS'25 |
Safe + Safe = Unsafe? Exploring How Safe Images Can Be Exploited to Jailbreak Large Vision-Language Models Chenhang Cui, Gelei Deng, An Zhang*, Jingnan Zheng, Yicong Li, Lianli Gao, Tianwei Zhang, Tat-Seng Chua |
| NeurIPS'25 |
On Reasoning Strength Planning in Large Reasoning Models Leheng Sheng, An Zhang*, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, Tat-Seng Chua |
| NeurIPS'25 |
RSafe: Incentivizing Proactive Reasoning to Build Robust and Adaptive LLM Safeguards Jingnan Zheng, Xiangtian Ji, Yijun Lu, Chenhang Cui, Weixiang Zhao, Gelei Deng, Zhenkai Liang, An Zhang*, Tat-Seng Chua |
| NeurIPS'25 |
Search and Refine During Think: Facilitating Knowledge Refinement for Improved Retrieval-Augmented Reasoning Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, Xiang Wang |
| NeurIPS'25 |
AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems Yu Shang, Peijie Liu, Yuwei Yan, Zijing Wu, Leheng Sheng, Yuanqing Yu, Chumeng Jiang, An Zhang, Fengli Xu, Yu Wang, Min Zhang, Yong Li |
| KDD'25 |
LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation Yingzhi He, Xiaohao Liu, An Zhang*, Yunshan Ma, Tat-Seng Chua |
| SIGIR'25 |
AlphaFuse: Learn ID Embeddings for Sequential Recommendation in Null Space of Language Embeddings Guoqing Hu, An Zhang*, Shuo Liu, Xiang Wang, Tat-Seng Chua |
| ICLR'25 |
Language Representations Can be What Recommenders Need: Findings and Potentials Leheng Sheng, An Zhang*, Yi Zhang, Yuxin Chen, Xiang Wang, Tat-Seng Chua |
| ICLR'25 |
Preference Diffusion for Recommendation Shuo Liu, An Zhang*, Guoqing Hu, Hong Qian, Tat-Seng Chua |
| ICLR'25 |
Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment Chenhang Cui, An Zhang*, Yiyang Zhou, Zhaorun Chen, Gelei Deng, Huaxiu Yao, Tat-Seng Chua |
2024
| NeurIPS'24 |
On Softmax Direct Preference Optimization for Recommendation Yuxin Chen, Junfei Tan, An Zhang*, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, Tat-Seng Chua |
| NeurIPS'24 |
Customizing Language Models with Instance-wise LoRA for Sequential Recommendation Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, Xiangnan He |
| NeurIPS'24 |
Towards Neuron Attributions in Multi-Modal Large Language Models Junfeng Fang, Zac Bi, Ruipeng Wang, Houcheng Jiang, Yuan Gao, Kun Wang, An Zhang, Jie Shi, Xiang Wang, Tat-Seng Chua |
| NeurIPS'24 |
ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation Jingnan Zheng, Han Wang, An Zhang*, Tai D. Nguyen, Jun Sun, Tat-Seng Chua |
| ACL'24 |
ProtT3: Protein-to-Text Generation for Text-based Protein Understanding Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua |
| WWW'24 |
General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout An Zhang, Wenchang Ma, Pengbo Wei, Leheng Sheng, Xiang Wang |
| SIGIR'24 |
On Generative Agents in Recommendation An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, Tat-Seng Chua |
| SIGIR'24 |
Large Language Model Powered Agents for Information Retrieval (Tutorial) An Zhang, Yang Deng, Yankai Lin, Xu Chen, Ji-Rong Wen, Tat-Seng Chua |
| WWW'24 |
Large Language Model Powered Agents in the Web (Tutorial, Companion Volume) Yang Deng, An Zhang, Yankai Lin, Xu Chen, Ji-Rong Wen, Tat-Seng Chua |
2023
| TOIS'23 |
Robust Collaborative Filtering to Popularity Distribution Shift An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang, Tat-Seng Chua |
| EMNLP'23 |
ReLM: Leveraging Language Models for Enhanced Chemical Reaction Prediction Yaorui Shi, An Zhang*, Enzhi Zhang, Zhiyuan Liu, Xiang Wang |
| NeurIPS'23 |
Empowering Collaborative Filtering with Principled Adversarial Contrastive Loss An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua |
| NeurIPS'23 |
Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He |
| NeurIPS'23 |
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, Tat-Seng Chua |
| ACM MM'23 |
Online Distillation-enhanced Multi-modal Transformer for Sequential Recommendation Wei Ji, Xiangyan Liu, An Zhang*, Yinwei Wei, Yongxin Ni, Xiang Wang |
| ACM MM'23 |
Redundancy-aware Transformer for Video Question Answering Yicong Li, Xun Yang, An Zhang, Chun Feng, Xiang Wang, Tat-Seng Chua |
| KDD'23 |
Discovering Dynamic Causal Space for DAG Structure Learning Fangfu Liu, Wenchang Ma, An Zhang*, Xiang Wang, Yueqi Duan, Tat-Seng Chua |
| WWW'23 |
Invariant Collaborative Filtering to Popularity Distribution Shift An Zhang, Jingnan Zheng, Xiang Wang, Yancheng Yuan, Tat-Seng Chua |
| ICLR'23 |
Boosting Causal Discovery via Adaptive Sample Reweighting An Zhang, Fangfu Liu, Wenchang Ma, Zhibo Cai, Xiang Wang, Tat-Seng Chua |
| WSDM'23 |
Cooperative Explanations of Graph Neural Networks Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, Tat-Seng Chua |
2022
| NeurIPS'22 |
Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering. An Zhang, Wenchang Ma, Xiang Wang, Tat-Seng Chua |
| ICML'22 |
Let Invariant Rationale Discovery inspire Graph Contrastive Learning. Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, Tat-Seng Chua. |
| ICLR'22 |
Discovering invariant rationales for graph neural networks. YingXin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua. |
| TPAMI'22 |
Reinforced Causal Explainer for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang*, Fuli Feng, Xiangnan He, Tat-Seng Chua |
| KDD'22 |
CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation. Yunshan Ma, Yingzhi He, An Zhang*, Xiang Wang, Tat-Seng Chua. |
2021
| NeurIPS'21 |
Towards Multi-Grained Explainability for Graph Neural Networks Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-Seng Chua |
2020
| SIGIR'20 |
Disentangled Graph Collaborative Filtering Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua. |